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Abstract—Computational notebooks such as Jupyter are now
used by millions of data scientists, machine learning engineers,
and computational researchers to do exploratory and end-user
programming. In recent years, dozens of different notebook
systems have been developed across academia and industry.
However, we still lack an understanding of how their individual
designs relate to one another and what their tradeoffs are. To
provide a holistic view of this rapidly-emerging landscape, we
performed, to our knowledge, the first comprehensive design
analysis of dozens of notebook systems. We analyzed 60 notebooks
(16 academic papers, 29 industry products, and 15 experimen-
tal/R&D projects) and formulated a design space that succinctly
captures variations in system features. Our design space covers 10
dimensions that include diverse ways of importing data, editing
code and prose, running code, and publishing notebook outputs.
We conclude by suggesting ways for researchers to push future
projects beyond the current bounds of this space.

Index Terms—computational notebooks, literate programming

I. INTRODUCTION

Over the past decade, computational notebooks such as
Jupyter [1] have become popular programming environments
for data scientists, machine learning engineers, computational
researchers, and business analysts [2]. As modern embodi-
ments of Knuth’s literate programming vision [3], notebooks
enable programmers to rapidly prototype and share explo-
rations by interweaving expository prose, executable code, and
rich program outputs (e.g., data tables, images, and interactive
widgets). In addition, modern notebook systems are situated
within complex end-to-end workflows that involve data ingest,
computing environments, collaboration, and distribution.

Computational notebooks embody several themes that are
of interest to the VL/HCC community: end-user program-
ming [4], exploratory programming [5], live programming [6],
and literate computing [7]. Both academic researchers [8]–[11]
and industry practitioners [12], [13] have studied how people
use notebooks in their work. These findings have informed the
design of new systems that reduce common user frustrations:
For instance, Verdant [14], [15] helps users manage the abun-
dance of code and output versions created within notebooks,
and Stitch Fix’s Nodebook [16] eliminates out-of-order cell
execution to improve reproducibility of results.

At present, dozens of such notebook systems have been
developed in both academia and industry, but most are one-off-
designs meant to address a specific user need or, for academic
projects, to prototype a novel user interaction technique.

Despite this recent proliferation of notebook systems and
the gradual maturing of this field, we still lack a systematic
understanding of how these dozens of individual designs relate
to one another and what their tradeoffs are. To provide this
holistic overview, we developed the first comprehensive design
space of computational notebooks by analyzing dozens of
notebook systems across academia and industry.

In HCI research, a design space succinctly captures multiple
dimensions of variation in possible system features within a
given domain; each individual system covers a specific range
in its design space. Researchers have mapped out design
spaces for systems in domains such as end-user program-
ming [17], [18], information visualization [19], [20], and
tangible user interfaces [21]. In this paper, we extend this
analysis technique to the domain of computational notebooks.

Figure 1 shows the design space we created by analyzing
the features of 60 notebook systems (16 academic papers, 29
industry products, and 15 experimental/R&D projects). We
grouped our 10 design space dimensions into four major stages
of a data science workflow: importing data into notebooks,
editing code and prose (editor style, supported programming
languages, versioning, collaboration), running code to generate
outputs (cell execution order, liveness [6], execution environ-
ment, and cell outputs), and publishing notebook outputs.

We found that industry products often prioritize widespread
adoption, so their designs do not deviate much from that of the
widely-used Jupyter Notebook format. In contrast, academic
and R&D projects can afford to experiment more with dif-
ferent kinds of cell execution orders, live programming, and
interactive outputs. That said, most designs are still restricted
by people’s current data science workflows, which involve
interfacing with desktop computers using keyboards and mice.
To innovate beyond this frontier, we suggest supplementing
future notebook systems with non-desktop computing devices
such as mobile and ubiquitous computing devices. Another
way to push beyond current designs is to focus on user groups
other than professional data scientists, such as educators,
artists, or those in low-resource computing environments.

In sum, this paper’s contributions are:
• A definition of “computational notebook” (Section IIIA)
• The first comprehensive design analysis of computational

notebooks, identifying 60 notebook systems across three
categories: academic, product, and experimental/R&D.

• A design space that summarizes notebook features, and
ideas for how researchers can innovate beyond its bounds.978-1-7281-6901-9/20/$31.00 ©2020 IEEE



Fig. 1. The design space of computational notebooks, which we formulated by analyzing the features of 60 notebook projects across academia and industry.
As Table I shows, each individual project can occupy multiple points along each dimension of this design space.

II. RELATED WORK

Computational notebooks trace their lineage back to the
vision of literate programming that Knuth first articulated in
the early 1980s [3]. Knuth envisioned software being written
like literature, with code and expository text interwoven into
a single document to facilitate a natural human reading order.
To implement this vision, he created the WEB system to
interweave Pascal code with TeX-formatted exposition. The
Mathematica scientific environment extended these ideas by
creating the first computational notebook in 1988 [22], fol-
lowed by a similar feature in Maple in 1989 [23]. Because
early notebooks were embedded within proprietary environ-
ments, they remained niche products within the scientific
community for the next two decades. As free and open-source
web technologies matured in the 2000s, Perez and Granger
developed the IPython Notebook in 2011 [24], which evolved
into the popular Jupyter Notebook in 2015 [1].

The notebook systems we analyze embody several facets

of programming research that are of interest to the VL/HCC
community: end-user programming, live programming [6], and
literate computing. Notebooks are widely-used environments
for exploratory [5] and end-user programming, which Ko et
al. define as coding as a means to an end (e.g., to produce
data science insights or research findings) rather than to create
artifacts for broader public use [4]. That said, some systems
in Table I have affordances for creating public artifacts such
as web dashboards or reproducible software packages. Also,
modern notebooks embody the spirit of literate computing,
which is a generalization of Knuth’s literate programming
vision that mixes code with both exposition and rich outputs
such as images, videos, and interactive widgets [7].

Aside from publishing academic papers on new notebook
systems (summarized in Section IV), researchers have also
studied how data scientists use notebooks and what obstacles
they face. Rule et al. discovered a pervasive tension between
Jupyter notebooks used for exploration (i.e., prototyping anal-



yses) and explanation (i.e., sharing research results) [10]. Kery
et al. found that data scientists often cleaned up exploratory
notebooks into explanatory ones by using ad-hoc methods
like alternately expanding and consolidating code cells [9].
A broader study discovered pain points for notebook users
along the entire workflow spectrum ranging from setup to
exploration to sharing [8]; the 60 systems that we analyze
in this paper are often attempts to address specific pain points
along that spectrum. Lastly, CSCW researchers investigated
how data science teams collaborate using notebooks and
discovered the limitations of current notebook systems for both
asynchronous and synchronous collaboration [11], [25], [26],
which we also include as a dimension in our design space.

The closest prior work to ours was a PPIG workshop
paper [7] where the authors surveyed 12 literate computing
projects, 7 of which were notebooks (which we also included
in our study). Similarly, Merino et al. surveyed 12 notebooks
(which we also included in our study) and 4 other systems as
a formative study to inform the design of their Bacatá system,
which generates notebook UIs for DSLs [27]. Both of these
analyses were much smaller in scope and did not focus on
mapping a design space of technical notebook features. To
our knowledge, ours is the first comprehensive design study
of dozens of notebook systems across academia and industry.

III. METHODS

We performed a qualitative analysis of 60 computational
notebook systems across academia and industry.

A. Defining the Term “Computational Notebook”

Our first task was to define “computational notebook” to
determine what projects to include in our study. On one hand,
we did not want to restrict ourselves to only variants of Jupyter
Notebooks, which is now the most popular format [1]. On the
other hand, we did not want to expand our definition too much
to include projects that were too distant. Based on prior studies
of notebook use [8]–[11], [25], [26], [28] and our own expe-
riences as notebook researchers, we define a computational
notebook as a system that supports literate programming [3]
using a text-based programming language (e.g., Python, R,
JavaScript, or a DSL [27]) while interweaving expository
text and program outputs into a single document.

This definition excludes “non-computational” notebooks
such as electronic lab notebooks [29] used by scientists to track
their daily work, general notetaking tools such as OneNote
and Evernote, and modern notetaking apps with spreadsheet-
like computational capabilities (e.g., Airtable [30], Coda [31],
Notion [32]). It also excludes projects like Distill.pub [33]
and Explorable Explanations [34], which provide widgets for
users to interactively tune parameters but which do not support
writing text-based programming languages in the notebook.

Since many notebooks are implemented as Jupyter exten-
sions, it can be hard to tell what counts as a standalone system.
In general, we counted academic contributions that are pub-
lished papers and industry contributions that are marketed as
either standalone products (both open-source and proprietary)

or substantive R&D efforts. We excluded smaller extensions
like postprocessing scripts that only transform notebook out-
puts (e.g., nbinteract [35], ThebeLab [36], Voila [37]).

B. Finding Notebook Systems Across Academia and Industry

We sought to be comprehensive in finding all publicly-
known notebook systems that fit our definition. For academic
projects, we performed a literature search starting with re-
search papers at venues including VL/HCC, CHI, UIST, and
CSCW, and then branched outward via bibliography crawls
and Google Scholar searches for notebook-related terms (e.g.,
“computational notebook”, “literate programming”). For in-
dustry projects, we consulted with data scientist colleagues,
performed web searches for relevant terms, watched talk
videos at practitioner conferences such as JupyterCon [38], and
searched through discussion forums and blogs. We iterated on
our list by showing drafts to other notebook researchers and
practitioners, including core members of the Jupyter project
team [39], to receive additional suggestions to include.

C. Data Overview and Analysis

We found 60 total systems (circa Feb 2020), summarized
in Table I. For each, multiple members of our research team
independently enumerated its features by reading relevant pa-
pers and user guides/documentation, watching demo and talk
videos, and trying out notebooks that were publicly available.
We focused our qualitative content analysis purely on technical
features rather than business-oriented features such as pricing,
licensing models, or target markets. The research team met
multiple times to merge our notes, categorize them together
into themes using an inductive analysis approach [40], and
iterate until we could not find additional features. To formulate
a design space from these features, we followed a similar
methodology as Segel and Heer [19], who made a design
space of narrative visualizations from content analysis of
58 visualization webpages. Specifically, we sought to distill
generalizable concepts from specific notebook features and
find what concepts multiple notebooks shared in common.
For instance, whether a notebook supports Python or R is an
implementation detail, but the fact that a single or multiple
languages can coexist within a notebook is a more general-
izable design concept. We made several iterations as a team
before finalizing our 10 dimensions, which are grounded in the
phases of a data science workflow. We originally considered
a larger number of more specific dimensions (e.g., notebook
distribution) but merged them into four main workflow phases.

D. Study Design Limitations

Although we sought to be comprehensive, there is no
guarantee that we found all relevant computational notebook
systems; we do not have access to internal company projects
nor to unpublished academic projects. As the first study of
this scope, though, we believe our set of 60 is sufficient for
surveying trends and forming the basis for future analyses.

Our goal was to use these 60 systems to map out a design
space, so we do not describe all features of each one. Since



we organized findings around the 10 design space dimensions
rather than describing each notebook, we omit specific feature
details such as the programming languages supported by each.
Also, there is subjectivity in how we selected our dimensions,
so other researchers may have picked different dimensions.

Since Jupyter is now the most popular platform, systems
built on top of it are overrepresented in our data, accounting
for around half of our 60 projects. That said, we included
other ecosystems such as R, Mathematica, and Spark; we also
found experimental and academic research projects that built
their own bespoke notebook interfaces separate from Jupyter.

IV. RESULTS OVERVIEW: SOURCES OF NOTEBOOKS

We identified three sources of notebooks, summarized in
Table I: academic, product, and experimental/R&D.
Academic: The first source includes 16 research projects that
have been published as academic papers. Most of these are
from university labs, but MessyNotebooks [41], Tempe [42],
[43], and Wrex [44] are from Microsoft Research.

Each academic project usually makes one distinct and pre-
cise innovation. Some are implemented as Jupyter extensions:
Wrex [44] adds programming-by-example to Jupyter by en-
abling users to interact with data tables and having the system
synthesize data wrangling code; Callisto [45] adds inline chat
and deictic references to facilitate anchored discussions around
notebook cells; Janus [46] adds cell folding and annotations;
Verdant [14], [15] adds automated cell-level micro-versioning
and development history visualizations; MessyNotebooks [41]
generates slices of notebook cells that produce a given output;
Bacatá [27] synthesizes Jupyter UIs for DSLs; Dataflow [47]
and SoS [48] notebooks track provenance for reproducibility.

Many academic projects are not tied to Jupyter since their
goal is to demonstrate novel ideas, not necessarily to gain
wide adoption. Three such systems are built atop the Web-
strates [49] platform: Codestrates [50], [51], Vistrates [52],
and Labbook [53]. Also, PolyJuS [54], Tempe [42], [43], and
Torii [55] implement their own custom UIs, Idyll [56] provides
a literate programming [3] markup format, and DS.js [57] turns
existing data-rich webpages into computational notebooks.
Product: In contrast to precisely-targeted innovations of aca-
demic research, notebook products are monolithic solutions
aimed at broad adoption. We define product broadly to mean
any system intended to serve a sizable user population; by
this definition, products can be free or paid, open-source
or closed-source, and maintained by for-profit companies or
non-profits. Many of these are built on top of Jupyter. Note
that since Jupyter is a platform (and accompanying nonprofit
organization) rather than a specific product, in Table I we
separately show the two official products maintained by this
organization: the original Jupyter Notebook UI and the newer
JupyterLab IDE [1], [58]; for these two, we count only their
features from default installations without any extensions.

Many products are companies hosting Jupyter in the cloud
to provide “Jupyter-as-a-service.” They add features such as
access to large-scale datastores, fast compute engines, real-
time collaboration, or integration with other cloud services.

General-purpose systems include Binder [59], Databricks [60],
Gigantum [61], IBM Watson Studio [62], Kaggle Note-
books [63], Microsoft Azure Notebooks [64], and Mode [65].
Some are specialized for collaboration: Google Colab [66],
Datalore [67], Deepnote [68], and Kyso [69]. Others have a
domain-specific focus, such as CoCalc [70] (mathematics),
Kogence [71] (supercomputing), Quantopian [72] (finance),
and CodeOcean [73] and Nextjournal [74] (reproducibility).

Besides systems built atop Jupyter Notebooks, there are
several other major ecosystems: RStudio [75] provides an
open-source IDE for R where users can write RMarkdown
Notebooks [76] and make interactive dashboards with the
Shiny framework [77]. Mathematica (now renamed to Wol-
fram) has maintained their own proprietary notebook format
since 1988 [22], [78]; Maple [79] and MATLAB [80] have
similar embedded notebooks. Spark Notebooks [81] and Zep-
pelin [82] provide notebook interfaces to access the Apache
Spark big data ecosystem using Scala and SQL. Spyder [83]
provides a MATLAB-style IDE for Python with notebook
support. Finally, startups such as Observable [84], RunKit [85],
and Streamlit [86] have created their own notebook-based
environments for rapid prototyping of data-driven web apps.

Experimental / R&D: This final source contains 15 systems
that fall in between academic and product types. They differ
from academic research in that they are not formally evaluated
or published as papers, and they differ from industry products
in that they are less polished. Note that the line between
experimental/R&D and industry products may be blurry. One
distinction is that experimental/R&D projects do not feel as
“standalone” as products do, and their websites are often just
a GitHub code repository with some technical documentation.

Nonprofits have created experimental systems such as Io-
dide [87] from Mozilla, nbdev [88] from fast.ai, Livebook [89]
from Ink & Switch, and the nteract notebook UI [90] and Pa-
permill [2], [91] production scheduler from NumFOCUS. In-
dependent creators have started projects such as Carbide [92],
Leisure [93], and Eve (a startup that was in R&D phase) [94].

Some companies also release their R&D projects as open-
source software: Stitch Fix altered Jupyter with forced in-
order cell execution in their Nodebook [16] system. Stripe
shared their reproducible production notebook workflows [95].
Finance firm Two Sigma extended Jupyter with polyglot JVM
and Spark support in BeakerX [96], which is similar to
Netflix’s Polynote [97] project. Another finance firm, Cap-
ital Fund Management, released Jupytext [98] to provide a
Markdown-like text editing experience for notebooks. Several
companies also developed plug-ins to integrate notebooks into
traditional IDEs, such as Hydrogen [99] for the Atom IDE and
Microsoft’s Jupyter mode for Visual Studio Code [100].

V. THE DESIGN SPACE OF COMPUTATIONAL NOTEBOOKS

Table I summarizes how all 60 notebooks we analyzed fit
into our design space from Figure 1. We grouped our 10 design
space dimensions by their typical order in a computational
workflow: importing data into notebooks, editing code and



TABLE I
HOW THE 60 NOTEBOOK SYSTEMS IN OUR STUDY (COLUMNS) FIT INTO THE DESIGN SPACE DIMENSIONS (ROWS) WE ILLUSTRATED IN FIGURE 1.



prose, running code to generate cell outputs, and publishing
notebook outputs. Note that our design space covers more than
just the core UI of the notebook itself; it captures the entire
end-to-end system that the notebook resides within.

A. Importing Data into Notebooks

1) Data Sources: The baseline is accessing only local files,
which means that it is up to the user to manage their data
sets and import them using a programming language and
libraries (e.g., the Python CSV reader module). Default Jupyter
Notebooks and most non-cloud variants fall into this category.

Cloud storage means that the system exposes data sets
stored in a cloud service as though they were local files. For
example, Google Colab [66] lets users mount a Google Drive
folder and then access its files in the notebook.

Large data means that the system has built-in support for
accessing data that is too large to fit into RAM; these datasets
cannot be fully imported into a running notebook session.
For instance, Databricks [60] and Spark Notebooks [81] allow
users to write SQL queries within notebook cells to access
selected slices of terabyte-scale data within a session.

Finally, streaming data means the notebook allows users
to both connect to real-time streaming data sources and
automatically update its computed outputs as new data arrives.

B. Editing Code and Prose

Four design space dimensions relate to editing interfaces:

2) Editor Style: At one end, systems like Iodide [87] and
Streamlit [86] let users write code and prose in an en-
hanced text editor; those systems compile text into interac-
tive notebook-like webpages. In the middle, most notebooks
provide a more structured cell-based editor where users can
independently edit, run, and rearrange cells within a note-
book file. At the other extreme are fully-featured IDEs (e.g.,
JupyterLab, RStudio) that embed notebooks alongside data
inspectors, debuggers, terminals, and other developer tools.
Codestrates [50] is the most unique since it allows users to
write JavaScript to customize its own UI; although it starts as
a basic cell-based editor, it can be reprogrammed into an IDE.

3) Programming Languages: The baseline here is sup-
port for coding in a single language (e.g., JavaScript for
Codestrates [50], a JavaScript variant for Observable [84], a
Datalog-like DSL for Eve [94]). Next is support for multiple
languages, but each notebook file can only run a single
language; default Jupyter works this way. Polyglot notebooks
such as Polynote [97] and PolyJuS [54] enable users to
natively mix multiple language within the same notebook,
which is useful when the most convenient libraries for different
stages of a data analysis are in different languages (e.g., web
scrapers in Perl, machine learning in Python, statistics in R).

4) Versioning: Studies found that notebooks are often used for
exploratory workflows [5] involving lots of trial-and-error [8]–
[10] and that users struggle to keep track of many versions
of analysis code and outputs. The baseline here is no built-
in support, which means that it is up to users to track their

own versions by, say, committing notebooks to Git. Next
is notebook-level versioning, where the system automatically
saves versions of entire notebook files so users do not need
to learn about version control. Next is notebook+dependency
versioning, where systems like Nextjournal [74] save not only
raw notebook files but also accompanying data sets and envi-
ronment dependencies (e.g., 3rd-party libraries and packages).
This enables notebooks to be reliably re-run to reproduce the
same results, which is important for replicability of scientific
results. At the most extreme is cell-level versioning, where
each code and output cell can be separately auto-versioned.
For instance, Verdant keeps track of individual cell edits at the
code AST level so that “each syntactically meaningful span of
text in the code can be recorded with its own versions” [14].

5) Collaboration: Studies also found that notebooks are often
used in collaborative data science workflows [11], [25], [26].
The baseline here is no built-in collaboration support, so
users must coordinate via a mix of third-party tools (e.g.,
workplace chat with Slack, code review and issue commenting
with GitHub’s web UI). Next is built-in support for asyn-
chronous collaboration, most commonly via annotations and
comment threads next to notebook cells. Finally, some support
synchronous collaboration by embedding real-time chat and
allowing multiple users to concurrently edit the same notebook
cells, akin to Google Docs. (Note that Google Colab was
originally designed for synchronous collaboration but its real-
time sync API is currently down [101].)

C. Running Code to Generate Cell Outputs

We identified four design space dimensions related to code
execution: order, liveness, environment, and cell outputs.

6) Execution Order: Notebooks contain a series of code
cells, each of which can be run independently to produce
outputs. Most allow cell execution in any order, which means
users can run cells out of order and multiple times as they
iterate. However, both academic studies [8]–[10] and industry
reports [12], [13] show that any-order execution is a major
source of frustration for notebook users; specifically, it is
hard to tell which exact series of cell executions led to the
notebook’s current state or how to reproduce that state. A
recommended best practice is for users to clean up their cells
and run them all in-order to create a final shareable notebook.

To reduce these frustrations, some notebooks implement
forced in-order execution. This means when the user clicks
“Run” on a particular cell, the notebook will reset its global
state and then run all cells from the top until that cell. (That is
the user’s mental model, but in reality these systems such as
Nodebook [16] track dataflow dependencies so that not all
cells need to be re-run each time.) This design eliminates
the problems of out-of-order cell execution, of cells being
run multiple times and altering global state in unexpected
ways, and of cells being deleted after being run but their
outputs still remaining in the notebook’s global state. But the
tradeoff is lack of flexibility, since some users appreciate rapid
prototyping by running cells in any order. As a middle ground,



systems like MessyNotebooks retroactively turn an existing
notebook into a forced in-order one by backward-slicing only
the cells that lead to a certain desired output [41].

Finally, some notebooks implement a reactive execution
model, much like spreadsheets do. In a reactive model, running
a cell triggers the notebook to automatically re-run all other
cells that depend on values defined or altered in that cell.
This model gives users the flexibility to write their code in
any notebook cell regardless of order, but run-time value
dependencies are automatically tracked by the notebook so
there is still a predictable (albeit non-linear) execution order.

7) Execution Liveness: Most notebooks run a cell only when
the user clicks “Run” or uses a keyboard shortcut. Some have
simple forms of live execution where a cell is automatically
re-run whenever the user momentarily pauses editing or moves
their cursor to another cell; this type of liveness (level-
3 in Tanimoto’s taxonomy [6]) provides immediate visual
feedback, which can speed up the iteration and debugging
cycles. Systems like Tempe implement a more sophisticated
form of level-4 liveness [43] by updating the output live not
only after the user edits a cell but also in real time when the
data stream that the cell accesses has new data arrive in it.

8) Execution Environment: Notebook systems also vary in
where they execute code. JavaScript-based notebooks such as
Codestrates [50] and Observable [84] run code directly in
the user’s browser, which is a convenient way to eliminate
complex installation and setup issues; Iodide [87] compiles a
Python environment to WebAssembly to run directly in the
browser. Next, most desktop Jupyter variants run code locally
on the user’s computer in a separate non-browser process that
communicates with the notebook’s browser-based UI. Cloud-
hosted Jupyter systems run notebook code in a single process
on a remote machine with access to more computational
power and GPUs than the user’s machine. Finally, systems
like Databricks [60] and Kogence [71] automatically set up
notebooks to run in parallel and distributed computing envi-
ronments involving multiple remote machines at once.

9) Cell Outputs: When each cell is executed, it produces
output directly underneath or beside it. This output can range
from plain text (akin to a terminal or REPL) to multimedia
(e.g., data tables, images, sound clips, videos) all the way
to interactive widgets. These widgets allow users to set pa-
rameter values and re-run cells in order to quickly prototype
variants of data analyses. Note that the systems in Table I
that are built atop Jupyter support all types of outputs since
Jupyter comes bundled with an interactive widget library.
Finally, some research systems go even further by allowing
interactive widgets to alter the code in the accompanying cell:
Carbide [92] exposes sliders whose values are synchronized
with numeric literals in code cells, and Wrex allows users to do
programming-by-example [44] by entering example values in
output tables and having the system automatically synthesize
Python data wrangling code to insert into nearby code cells.

D. Publishing and Updating Notebook Outputs

Notebooks are often used for personal exploration and end-
user programming workflows [5], [10], but users sometimes
intend to share notebooks with others. They do so by pub-
lishing it in various formats, which have different levels of
support for updating in response to post-publication feedback.

10) Notebook Outputs: The baseline here is for notebooks
to generate static reports that are read-only documents. For
instance, Jupyter Notebooks can be exported as static HTML
files, but those might contain JavaScript-powered interactive
visualizations (e.g., using D3 [102] or Vega [103]). Next, some
can be exported as dynamic dashboards that (unlike static
HTML) automatically update and recompute cell outputs as
new streaming data arrives. Both static and dynamic formats
facilitate common explanation use cases [10] for notebooks.

Lastly, some have stretched notebooks beyond data science
use cases to turn them into deployable software artifacts.
For instance, nbdev [88] exports notebooks as self-contained
Python libraries that can be imported into other software
projects; IBM Watson Studio [62] deploys notebooks as ma-
chine learning models with live monitoring; Codestrates [50]
and Eve [94] allow users to create standalone web applications.

VI. DISCUSSION

High-Level Trends: Industry products are geared toward
scalability and adoption, so their designs tend to be standard
Jupyter Notebooks integrated into a cloud platform (e.g., for
data sources, automatic versioning, execution environments,
and distribution). Although one could in theory emulate these
features by installing open-source software and manually
provisioning cloud resources, these products provide a level
of convenience that fosters widespread adoption.

In contrast, academic and R&D projects are more experi-
mental, adopting less conventional designs for execution order,
liveness, and interactive outputs. They also contain properties
that are hard to fully capture in our design space: For instance,
Codestrates [50] and systems built on it emphasize malleability
where the entire notebook programming interface can be
adjusted on-the-fly by editing its code. Systems like DS.js [57],
Idyll [56], and Torii [55] target educational use cases rather
than being for professional data scientists, so their interfaces
differ from conventional programming-oriented notebooks.

Design Tradeoffs: Each dimension in Figure 1 has associated
tradeoffs. 1) Data sources: moving to the cloud may sacrifice
privacy and impose more friction for working with legally-
protected data (e.g., COPPA, HIPAA), 2,3) Editor style and
languages: IDE-like interfaces and polyglot notebooks make
the UI more complex for novices to learn, 4) Versioning: finer-
grained versioning again requires greater UI complexity to
let users organize and sift through versions, 5) Collaboration:
integrated collaboration may not always be better since users
may prefer to use their own organization’s external tools (e.g.,
Slack), 6) Execution order: in-order is simplest but lacks
flexibility; reactive can be hard for novices since it is not
clear which cells execute when a particular one is edited



(hidden dependencies in Green’s cognitive dimensions [104]),
7) Liveness: again it may not be clear what code executes
if the user does not initiate those actions, 8) Environment:
remote execution is higher-performance than local but can
be harder to debug, 9,10) Cell/notebook outputs: the more
interactive, the less of a closeness-of-mapping (in Green’s
cognitive dimensions [104]) there is between code and outputs.

There are also design tradeoffs across dimensions: For
instance, an in-browser JavaScript notebook may have a hard
time supporting polyglot programming (though not impossible
as more languages now compile to WebAssembly); and note-
books that rely on remote multi-process execution may be hard
to package up as portable/versioned software artifacts, since
they often depend on the specifics of their execution environ-
ment (e.g., supercomputer infrastructure from Kogence [71]).

Notebook Toolkits: As a thought experiment, what about a
“kitchen-sink” approach where a hypothetical system covers
the entire design space of Figure 1 by providing all these
features as options? While that might seem appealing since
it would foster customization, from a usability perspective its
interface would get overly complex with too many modes. And
from a software engineering perspective it would be hard to get
such a monolithic system working robustly. Perhaps the most
practical path along this direction is to take a toolkit approach
like D3 [102] by turning each dimension of Figure 1 into
a well-scoped software module and then allowing developers
to compose them together using a “grammar of notebook
systems” akin to the grammar of graphics implemented by
the Vega [103] ecosystem. That way, software developers can
easily build bespoke notebooks for their intended user group.

Charting the Future of Computational Notebook Research:
Our study provides a map of the current state of the notebook
world, as summarized in Table I. In the short term, industry
products will continue to fill in more points along our design
space. Meanwhile, researchers in both academia and industry
can expand the boundaries of this map into uncharted territory.
What are possible ways forward? Here are a few directions:

There are still many opportunities for needs-based research
of the sort embodied by some of the academic projects in
Table I. The HCI approach of understanding the needs of
a user group, building a novel notebook system to address
those needs, and evaluating it on that user group will continue
to yield research innovations. To stretch the bounds of our
current design space, we encourage researchers to broaden out
to target user groups beyond professional data scientists, such
as educators, artists, designers, journalists, digital humanities
scholars, young children, older adults, people with accessibil-
ity needs, or those in low-resource computing environments.

Though important, we believe that needs-based research will
mostly continue to fill in our design space but not expand
much beyond it. That is because people’s needs are still tied
to their existing workflows; for computational notebooks that
means using keyboards to write textual code on desktop or
laptop computers. Thus, one way to go beyond the current
design space is to think about the abundance of non-desktop

computing devices available to us in our daily lives and how
we could use those for data-oriented work. For the price of a
laptop computer we can now buy several low-cost tablet- and
phone-sized devices. Weiser’s ubiquitous computing vision is
already here since we have plentiful access to pads (e.g., iPads)
and tabs (e.g., phones/watches) [105] but are not yet taking
full advantage of them for programming. Practically, we do not
envision these devices replacing keyboard+mouse+monitors
but rather supplementing them with auxiliary displays, dy-
namic magic lenses [106] (e.g., hovering a phone over a
monitor to peek into code or data), and touch and voice-
based inputs. Beyond pads and tabs, what about other ubicomp
devices such as wearables, smart glasses, augmented/mixed-
reality interfaces, portable projectors with 3D depth cameras,
and large-scale tabletop and wall displays? Specifically, Table I
shows that there is not much variation in cell outputs; a way to
innovate along this dimension is by adopting different sorts of
displays beyond ordinary computer screens. Similarly, many
systems do not support synchronous collaboration, and when
they do, it is often simple forms of multi-user text editing;
once again ubiquitous computing techniques can point the way
toward more expressive forms of synchronous collaboration.

The above was a technology-centric approach (start with
novel devices and prototype outward), so a complementary
approach is to be task-centric. What do people actually want
to do with notebooks? Examples include deriving business
insights, conducting scientific research, scholarly communi-
cation, collaboration, education, and personal creative ex-
pression. What future interfaces that mix code, data, and
multimedia might aid these tasks, regardless of whether they
“look” like the cell-based notebooks of today? We encourage
researchers not to have their thinking restricted by current
notebook formats simply due to the zeitgeist of recent aca-
demic publication trends. One metric for success here is how
different a new project looks from all the systems in Table I.

A more radical way to expand beyond current notebook
designs is to ban the term “computational notebook” altogether
and generalize it into interfaces for literate computing (i.e.,
literate programming + interactive media) [7]. One could argue
that Figure 1 is actually a design space of literate computing,
of which notebooks are a subset. This approach may mean re-
viving classic lines of work embodied by Smalltalk, Boxer, and
HyperCard [7], which Bret Victor et al. are doing at Dynamic-
land [107]. One challenge of such ambitiously generalizable
research is to balance expressiveness with usability/learnability
in order to avoid the Turing tar-pit, “in which everything is
possible but nothing of interest is easy” [108].

VII. CONCLUSION

We identified three main sources of computational note-
books (academic, industry products, and experimental/R&D)
and presented the first comprehensive study of 60 notebook
projects, which resulted in a ten-dimensional design space
that spans their technical features. In closing, we encourage
researchers to stretch the bounds of this space by pursuing
project ideas that go beyond fulfilling current user needs.
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DSLs, Almost for Free,” in Proceedings of the Conference Companion
of the 4th International Conference on Art, Science, and Engineering
of Programming, ser. Programming ’20. New York, NY, USA:
Association for Computing Machinery, 2020.

[28] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C. Huang,
R. Knight, N. Moshiri, M. H. Nguyen, S. B. Rosenthal, F. Pérez,
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