
Teaching Data Science by Visualizing Data Table Transformations:
Pandas Tutor for Python, Tidy Data Tutor for R, and SQL Tutor

Sam Lau∗
lau@ucsd.edu
UC San Diego

Sean Kross∗
skross@fredhutch.org

Fred Hutchinson Cancer Center

Eugene Wu
ewu@cs.columbia.edu
Columbia University

Philip J. Guo
pg@ucsd.edu
UC San Diego

ABSTRACT
Data science instructors often find it hard to explain to students
how a piece of code written in Python, R, or SQL executes in order
to transform tabular data. They currently resort to hand-drawing
diagrams or making presentation slides to illustrate the semantics
of operations such as filtering, sorting, reshaping, pivoting, group-
ing, and joining. These diagrams are time-consuming to create
and do not synchronize with real code or data that students are
learning about. In this paper we show that a step-by-step visual
representation of tabular data transforms can help instructors to
explain these operations. To do so, we created a table visualization
library that illustrates the row-, column-, and cell-wise relation-
ships between an operation’s input and output tables. On top of
this library we built a trio of free web-based visualization tools –
Pandas Tutor for Python, Tidy Data Tutor for R tidyverse, and SQL
Tutor – that run users’ code and automatically produce diagrams of
how Python/R/SQL transforms data tables step-by-step from input
to output. Since launching in Dec 2021, over 61,000 people from
over 160 countries have visited our website to try out these tools.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).

KEYWORDS
data science education; tabular data; code visualization
ACM Reference Format:
Sam Lau, Sean Kross, Eugene Wu, and Philip J. Guo. 2023. Teaching Data
Science byVisualizingData Table Transformations: Pandas Tutor for Python,
Tidy Data Tutor for R, and SQL Tutor. In 2nd International Workshop on
Data Systems Education (DataEd ’23), June 23, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3596673.3596972

1 INTRODUCTION
The past two decades have seen a sea change in the data ecosys-
tem, and there is more demand than ever for people who have
the capabilities to transform and analyze data. As such, there is a
growing diversity of data-oriented roles in the workforce – such
as data scientists, engineers, analysts, and enthusiasts – as well as
∗Sam Lau and Sean Kross contributed equally to this work as co-first authors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DataEd ’23, June 23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0207-5/23/06.
https://doi.org/10.1145/3596673.3596972

Figure 1: It can be hard for instructors to explain howan input
table of data (a) gets transformed by Python/R/SQL code into
an output table (b). We created visualization tools to help
instructors teach these kinds of table transformations.

the number of people that identify with these roles [2]. In many
universities, enrollments in introductory data classes have also bal-
looned due to interest from across disciplines [10]. For instance, at
Columbia University, W4111 Introduction to Databases was the 6th
largest class on campus in Fall 2021; at UC San Diego, COGS108
Data Science in Practice is one of the largest in our department.

Alongside this demand, there is a growing ecosystem of tools
centered around dataframe programming APIs [19] in Python and
R (e.g., pandas [4], tidyverse [5]), as well as the longstanding SQL
ecosystem. At their core, these different languages and APIs all
share the same underlying set of relational constructs (e.g., select,
project, join, union, aggregation). Yet as data science instructors,
we repeatedly encounter two major challenges when teaching data
manipulation using one or combinations of these popular tools:
1) Individual code statements can be hard to understand.
Dataframe APIs encourage programming idioms that perform mul-
tiple operations in a single dense statement [23]. For instance, say
that Alice is teaching an introductory course and writes this Python
pandas statement to analyze a dataset about dogs (Figure 1a):
dogs[dogs['size']=='medium'].sort_values('type')
.groupby('type').median()

When she runs that code, it produces the output table in Figure 1b.
Yet students may find it hard to understand how the input table
was transformed into the output, because the statement actually
performs four operations: filtering, sorting, grouping by a column,
and aggregating within-group medians. Note that Alice could te-
diously break up her code into four separate lines and try to explain
the intermediate outputs of each. But that still leaves the problem
that grouping and aggregation are individually hard to explain.
This problem is not limited to Python. The same concept might be
presented in R using the tidyverse [5] API or as a SQL query:
dogs %>% filter(size == "medium") %>% # R tidyverse pipeline

arrange(type) %>% group_by(type) %>%
summarize(longevity = median(longevity))

SELECT median(longevity) FROM dogs WHERE size = 'medium'
ORDER BY size GROUP BY type # SQL query

https://doi.org/10.1145/3596673.3596972
https://doi.org/10.1145/3596673.3596972


We note that SQL introduces additional challenges: its syntax is
the reverse (but not quite) of the execution order, and an optimizer
opaquely translates the SQL statement into a tree of physical oper-
ations. Understanding the conceptual and physical evaluation of a
SQL query is a notorious stumbling block for many students.

Instructors like Alice must now resort to hand-drawing ad-hoc
diagrams or making presentation slides to illustrate how these
statements work, which can be tedious and time-consuming.
2) It is hard to understand how data science tools differ. Data
science courses introduce multiple programming languages and
tools (e.g., both pandas and SQL) as each is well-suited for different
use cases. Students may expect that a pandas and SQL statement
should be semantically equivalent, but be surprised that they are not.
How can we allow them to see these subtle semantic differences?

In this paper we show that a language-independent step-by-step
visual representation of data transforms can address these pedagogical
challenges. To do so, we created a JavaScript-based table visualiza-
tion library that illustrates the row-, column-, and cell-wise relation-
ships between an operation’s input and output tables. On top of this
library we built a trio of freely-available web tools – Pandas Tutor
for Python [14], Tidy Data Tutor for R [13], and SQL Tutor [28] –
that automatically produce diagrams of how Python/R/SQL code
transforms data tables step-by-step from input to output.

As a concrete example, Figure 2 shows one of our tools, Pandas
Tutor, running the code from Figure 1. The user visits pandastutor.
com and writes their Python code. Then Pandas Tutor automati-
cally produces a diagram for each of the four transformation steps:
a) the filter shows the correspondence between input rows that
were retained by the filter predicate, and draws a box around the
attributes used in the predicate; b) sort renders arrows to map input
rows to their new positions in the output and draws a box around
the sorting attribute; c) groupby draws a box around the grouping
attribute and color-encodes rows in each group; d) aggregation
shows how rows in each group map to individual output statistics.

Compared to Figure 1, the step-by-step diagram created by Pan-
das Tutor in Figure 2 makes it much easier for an instructor to
explain to students what is going on behind the scenes to trans-
form the input table to the final output table. Our other two tools –
Tidy Data Tutor for R and SQL Tutor – work the same way. To our
knowledge, these tools are the first to render step-by-step diagrams
of data table transformations that appear across multiple languages
used in teaching introductory data courses.

2 RELATEDWORK
The two closest related projects to ours – Data Tweening [12] for
SQL and Datamations [21] for R – use animations to show how data
tables get reshaped. We took a complementary design approach
by rendering static diagrams that can be used in screenshots and
presentation slides, and we also support a larger set of operators
necessary to cover what is taught in introductory data courses.

Interactive data wrangling systems such as Wrangler [11], its
proactive extension [7], and Unravel [23] show inline visual pre-
views of table reshaping operations. These were designed to assist
working data scientists; in contrast, our tools were made specifi-
cally for teaching, so they also show side-by-side before-and-after
comparisons and fine-grained mappings to Python/R/SQL code.

Figure 2: Pandas Tutor is a web application that automat-
ically visualizes how Python pandas code transforms data
tables step-by-step. This screenshot shows the example from
Figure 1: a) filtering, b) sorting, c) grouping, d) aggregating.
We also created analogous visualization tools for R and SQL.

Our work also extends the line of computing education research
on program visualization tools [24]. These tools, such as Jeliot [17],
UUhistle [25], and Python Tutor [6], visualize the step-by-step run-
time state of code written for introductory programming courses.
Our tools are inspired by Python Tutor and extend its reach to
introductory data courses. This required us to design a different
set of visualizations focused on annotating table transformations
instead of on variables, objects, pointers, stack frames, and heaps.

Lastly, tools such as QueryVis [15], SQLVis [16], and SQL EX-
PLAIN [18] can help users to understand SQL query plans. These
tools show the query plan and the schemas of affected data tables;
but they do not show the concrete data that is being transformed,
since their goal is to emphasize a higher level of abstraction. We
build upon those ideas by showing both the query plan and the
actual data tables on-demand when the user clicks on nodes in the
query plan tree. Our intuition is that showing actual data can help
instructors explain SQL execution more concretely to students.

pandastutor.com
pandastutor.com


3 SYSTEM DESIGN AND IMPLEMENTATION
Pandas Tutor, Tidy Data Tutor, and SQL Tutor are web-based tools
that take the user’s code and data as inputs (data can be passed in
via a .csv file), runs the code on that data, and produces a set of
before-and-after table transformation diagrams (see Figure 2).

Each tool has a language-specific backend that takes Python, R,
or SQL code and adds precise run-time provenance/lineage track-
ing to it. For instance, Pandas Tutor uses LibCST [9] to rewrite
and instrument calls to Python pandas filtering functions like Fig-
ure 2a to track the column(s) being filtered on and the rows that
were selected. This instrumentation approach means that we must
manually1 add support for each function to track. While doing so
may be impractical for supporting, say, the entire pandas or tidy-
verse libraries with hundreds of API functions, in practice we found
that supporting around a dozen functions for each language was
sufficient for teaching basic concepts in data science courses.

SQL Tutor’s backend uses a Python-based educational DBMS
called Databass [27] that is instrumented to track record-level lin-
eage on a per-operator basis based on techniques from Smoke [20].
We run Databass in a web browser using Pyodide [1] to translate to
WASM (WebAssembly). It supports SPJA queries, including nested
subqueries. In practice, any DBMS that can export its query plan
and per-operator lineage info can be used as SQL Tutor’s backend.

Each tool’s backend runs the user’s instrumented code and
records the before and after states of the table that is being trans-
formed in each step along with tracked provenance about affected
rows/columns/cells. That is why a single line of code like Figure 2
can produce four diagrams, since it contains four transformation
steps in a pipeline (filtering, sorting, grouping, aggregating). This in-
formation then gets sent to the web-based frontend, which uses our
core visualization library (see next sections) to display it on-screen.

3.1 Design of Core Table Visualization Library
All of our tools use a common core table visualization library that
we wrote in JavaScript. Our main design principles were:

• Show input-output correspondences – Our library ren-
ders tables along with annotations such as bounding boxes,
color highlights, and arrows between rows, columns, and
cells (possibly across multiple tables). These annotations are
critical for teaching how input and output data correspond,
as shown by Figure 2. To avoid visual overload, users can
mouse hover and click to selectively show/hide annotations.

• Screenshot-friendly – We wanted our visualizations to
look polished enough so that users can take high-quality
screenshots that they can put in presentation slides or lecture
notes. We drew aesthetic inspiration from good hand-drawn
diagrams that we saw online and from studying how expert
instructors created their slides. Unlike related work such as
Data Tweening [12] and Datamations [21] we choose not to
use animations and instead render only static diagrams.

• Compact –What happens when users pass in tables that are
too large to fit on the screen? In that case, our library uses
heuristics to show the most relevant 12 rows by 8 columns –
prioritizing those that are being operated on, truncating long

1We did consider automatically inferring provenance at the Python/R interpreter level.
But false positives may produce inaccurate diagrams, which we did not want to risk.

strings, and sampling a few rows from each group (when
grouping is used). Users can un-hide cells and long strings by
dragging on hidden portions to reveal more data as needed.

• Embeddable and shareable – A JavaScript library makes it
easy to embed visualizations on any webpage and to share as
URLs. It also allowed us to embed Pandas Tutor into Jupyter
Notebooks for Python and Tidy Data Tutor into RStudio for
R since those data science IDEs are also built in JavaScript.

3.2 Supported Data Transformation Operators
On top of this core visualization library we implemented a set of
interactive diagrams to teach common data transformations. In
our experience, these have been sufficient to express the range of
operators taught in introductory data science and databases courses.
For each of these diagram types, we implemented API hooks into
our Python/R/SQL backends so that when users run code in those
languages, our tools call the visualization library to render the
appropriate diagrams. Here are all of the supported diagram types:

Selecting and filtering: Our tools visualize how operators select
individual rows/columns out of a table and optionally filter based on
boolean conditions. In Python pandas, this is done via the bracket
operator and other operators like.get(), .loc[], and .iloc[]. In
R tidyverse, it is done via the select(), filter(), and mutate()
functions; and in SQL via the SELECT and WHERE clauses.

Figure 2a visualizes filtering rows based on a boolean condition
(medium-sized dogs). Here is a more complex example of a line of
pandas code that selects columns from a dataframe df filtered on
the values of a specific row – df.loc[:, df.loc[’two’] <= 20]

This kind of idiomatic pandas code with brackets, colons, .loc[],
and boolean conditions can be very hard for beginners to under-
stand. Running it in Pandas Tutor clarifies what it does by showing
how the a and b columns are selected because their values in the
row labeled two (highlighted with a rectangle) are <= 20.

Sorting: Figure 2b shows how rows are sorted using the pandas
sort_values() function. Similar diagrams are rendered for sorting
using arrange() in R tidyverse and ORDER BY in SQL.

Grouping: Figure 2c shows the pandas .groupby() function creat-
ing three groups of rows, each with a unique color. Similar diagrams
are rendered for group_by() in R tidyverse and GROUP BY in SQL.
These diagrams use palettes from ColorBrewer [8] with 10 colors,
which is usually enough for the small examples used in teaching. A
warning appears if the user’s code creates more than 10 groups.

Group-wise operations: After grouping, operations can be applied
to all rows within each group. For instance, Figure 2 shows the
pandas .median() function applied to numeric values within each
group. R tidyverse has functions such as summarize(), arrange(),



and filter() that are group-aware and thus run within each group.
And SQL has different SELECT parameters to accompany GROUP BY.

Reshaping: An important precursor to data analysis is wran-
gling [11] (or tidying [26]) raw datasets into a form that is amenable
to analysis. This may involve reshaping tables to rearrange the
orientations of their rows or columns. In our experience, table re-
shaping operations can be hard for students to understand because
data suddenly moves around in non-intuitive ways.

Our tools use a combination of colors, highlights, and arrows
to show how each reshaping operation works. For instance, here
the pandas .stack() function ‘rotates’ cells around the kids label
(called an ‘index’) and turns it from a column index to a row index:

Here is how the .pivot() function rotates a table from a ‘long’
to ‘wide’ format by turning size from a row to a column index:

R tidyverse does reshaping via pivot_longer(), pivot_wider().
What is especially challenging about teaching reshaping opera-

tors is that they can turn metadata in indices (e.g., row or column
labels) into regular cell data and vice versa; also, multiple nested
layers of indices (called hierarchical indexing [3] in pandas) may
get created or destroyed in the process. Our tools visualize all of
these intricate interactions between metadata and table cell data.

Pivot tables: The pandas .pivot_table() function aggregates
data into a pivot table, an operation inspired by spreadsheets.

Here is how Pandas Tutor visualizes an example pivot table call
where the kids row index pivots into being a column index and
the values in the longevity column aggregate into a 2x2 cross-tab:

Similar to reshapings, pivot tables can be hard to understand
since passing in different values can result in very different outputs.

Joining two tables: All the above operators transform a single
table, but our tools also show joins between two tables. In pandas
this occurs via the .join() and .merge() functions, in R tidy-
verse via the inner_join(), left_join(), right_join(), and
full_join() functions, and in SQL via variants of the JOIN clause.

Here Pandas Tutor visualizes a call to .merge() to left-join two
tables via the likes and breed columns. The two input tables
appear side-by-side while the output table appears below them.
The columns to join on are surrounded with rectangles, and each

Figure 3: SQL Tutor visualizes a SQL statement’s query plan
(left) and lets the user step through its execution and interac-
tively examine each operator’s input and output tables along
with their row, column, and cell-level dependencies (right).

row’s color matches the row in the other table that it is being joined
with:

Since this is a left join, all rows in the left table make it to the
output (bottom), but the Golden Retriever and Yorkshire Terrier
rows in the right table do not make it since they have no matches in
the left table. The user can tweak the code to change the columns
to join on or to switch to a right join, inner join, or full outer join;
then the visualization will update to illustrate the differences.

3.3 Visualizing SQL Query Plans
Python pandas and R tidyverse code statements execute in a linear
sequence (i.e., a pipeline), so the corresponding visualizations can
also be linear (e.g., Figure 2). However, SQL engines compile a
single statement into a tree of physical operations, so this linear
visualization is no longer sufficient. Thus, one challenge of learning
SQL is that its declarative nature obscures the correspondence
between the order of clauses in its syntax and the operators in the
actual execution. In addition, the optimizer chooses from a large
space of physical plans. To address this challenge, SQL Tutor [28]
visualizes the step-by-step execution of a physical query plan.

Figure 3 shows its user interface. In contrast to Pandas or R
statements, which form a linear sequence of operations, a physical
query plan for a SQL statement forms a hierarchical structure. Thus,



Figure 4: SQL Tutor visualizing a many-to-many join when
the user hovers over a record in the right relation.

SQL Tutor explicitly shows the query plan tree on the left. To zoom
into each step, users can click on an operator or step through via a
depth-first tree traversal by clicking the previous/next buttons.

The right side of Figure 3 lists the operator name, internal id, and
the operator’s configuration (e.g., HashJoin ON r.sid, s.sid).
The diagrams are nearly identical to those for pandas and R since all
tools use the same visualization library. For instance, this example
joins the sailors (left) and reserves (right) relations on sid. The
user is hovering over the first ‘reserves’ record, which filters the
visualization annotations to the sailors that join with this record.
The arrows show the sailor rows that join with Eugene, and use the
same colors as their corresponding output records in the bottom
table. Vertical bounding boxes denote the join keys in both relations.

For many-to-many joins, all matching records on both sides
are highlighted. For instance, Figure 4 shows that the user has
highlighted the first record on the right relation; the tool then
colors all join candidates in the left relation and draws arrows from
those candidates to their additional matches in the right relation.

4 DEPLOYMENT AND PRELIMINARY IMPACT
We deployed pandastutor.com and tidydatatutor.com publicly
in December 2021 and spread the word to fellow instructors via
our professional and social networks. As a preliminary indicator of
impact, Google Analytics shows that around 45,000 unique users
visited pandastutor.com and 16,000 visited tidydatatutor.com
between Dec 2021 and the end of Apr 2023 (17 months). These
visitors came from over 160 countries spanning most of the world
(see Figure 5). SQL Tutor is also available on the web [28], but we
have not publicized it as widely since it is still under development.

Although these website visitor numbers from around the world
are personally exciting to us, we acknowledge that they are not
a substitute for conducting a formal evaluation to study what in-
structors do with these tools and whether it helps their students to
learn better. As some early steps here, we collected the following
anecdotes from our personal experiences teaching with these tools:

Co-lead-author Sam Lau used Pandas Tutor extensively while
teaching DSC 10: Principles of Data Science at UC San Diego during
Summer 2022. He observed that integrating Pandas Tutor within
Jupyter Notebooks was essential for student adoption since the

Figure 5: Google Analytics data showing the approximate
number of people per country who visited the Pandas Tutor
and Tidy Data Tutor websites from Dec 2021 to April 2023.

course materials were all presented within Jupyter. He made custom
stylistic adjustments such as font sizes and color contrast to make
the visualizations more legible when presenting on a projector or
via remote screen-share. Student feedback was positive, and he
observed students using the tool during class to visualize more
complex functions like groupby and merge. Other instructors of
DSC 10 and also DSC 80: Practice and Application of Data Science
at UC San Diego are now starting to use Pandas Tutor in class.

One limitation he encountered was the fact that Pandas Tutor
cannot handle datasets larger than a few megabytes. While this is
not a problem for demonstrating small in-class examples, homework
assignments often involve larger datasets (e.g., tens to hundreds
of MB) so students could not use Pandas Tutor to debug their
homework code. Optimizing performance on larger datasets is one
avenue for future work. (Tidy Data Tutor has the same limitation.)

More broadly, the Pandas Tutor and Tidy Data Tutor websites
include a sign-up form to join a private instructor mailing list to
receive updates on tool development. So far, over 90 data science
instructors have joined the list and some wrote a note on their form
about their interest in trying these tools in their classes. We hope
to follow up with them to see whether they have used it.

Co-author Eugene Wu released an early version of SQL Tutor
in his section of Columbia University’s Introduction to Databases
course in Fall 2022. Students in the course used it to visualize over
300 queries, with spikes that coincided with exams. One limita-
tion of the current implementation is its reliance on a custom and
incomplete SQL parser. Our plan is to replace this with an instru-
mented version of DuckDB [22] that captures the lineage needed
to visualize the query execution. DuckDB is increasingly used in
industry and data courses due to its easy-to-install nature, ability
to run in the browser thanks to WASM compilation, and fairly com-
plete feature set. Once we make this transition, SQL Tutor will be
released and disseminated more widely.

5 CONCLUSION
Data science instructors find it challenging to explain to beginners
how exactly Python/R/SQL code transforms tabular data. To help
overcome this challenge, we created a set of freely-available web-
based tools that visualize data table transformations step-by-step
in three popular languages: Pandas Tutor for Python [14], Tidy
Data Tutor for R [13], and SQL Tutor [28]. We are now working on
integrating these tools more deeply into data science courses.



ACKNOWLEDGMENTS
Thanks to Robert Ward for the initial web prototype of SQL Tutor
and to Rachel Lim for reading a draft of this paper. Thanks to UC
San Diego for Philip Guo’s sabbatical in 2021–2022, which led to the
inception of this systems-building project. This material is based
upon work supported by the National Science Foundation under
Grant No. NSF IIS-1845900; NSF grants 1845638, 1740305, 2008295,
2106197, 2103794; and a grant from the Alfred P. Sloan Foundation.

REFERENCES
[1] 2019. Pyodide is a Python distribution for the browser and Node.js based on

WebAssembly. https://pyodide.org/. Accessed: 2023-02-20.
[2] 2022. 11 Types of Data Science Jobs (With Responsibilities). https://www.indeed.

com/career-advice/finding-a-job/types-of-data-science-jobs. Accessed: 2023-02-
20.

[3] 2023. pandas - MultiIndex / advanced indexing. https://pandas.pydata.org/docs/
user_guide/advanced.html. Accessed: 2023-02-20.

[4] 2023. pandas - Python Data Analysis Library. https://pandas.pydata.org/. Ac-
cessed: 2023-02-20.

[5] 2023. Tidyverse: R packages for data science. https://www.tidyverse.org/. Ac-
cessed: 2023-02-20.

[6] Philip Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s Design
Guidelines for Building Scalable and Sustainable Research Software in Academia.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New York,
NY, USA, 1235–1251. https://doi.org/10.1145/3472749.3474819

[7] Philip J. Guo, Sean Kandel, JosephM. Hellerstein, and Jeffrey Heer. 2011. Proactive
Wrangling: Mixed-Initiative End-User Programming of Data Transformation
Scripts. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association
for Computing Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/
2047196.2047205

[8] Mark Harrower and Cynthia A Brewer. 2003. ColorBrewer.org: an online tool for
selecting colour schemes for maps. The Cartographic Journal 40, 1 (2003), 27–37.

[9] Meta Platforms Inc. 2019. LibCST - A Concrete Syntax Tree (CST) parser and
serializer library for Python. https://github.com/Instagram/LibCST. Accessed:
2023-02-20.

[10] Alexander C. Kafka. 2018. With Student Interest Soaring, Berkeley Creates New
Data-Sciences Division. The Chronicle of Higher Education (Nov 2018).

[11] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

[12] Meraj Khan, Larry Xu, Arnab Nandi, and Joseph M. Hellerstein. 2017. Data
Tweening: Incremental Visualization of Data Transforms. Proceedings of the
VLDB Endowment 10, 6 (2017), 661–672.

[13] Sean Kross and Philip J. Guo. 2021. Tidy Data Tutor - visualize R tidyverse data
pipelines. https://tidydatatutor.com/. Accessed: 2023-02-20.

[14] Sam Lau and Philip J. Guo. 2021. Pandas Tutor - visualize Python pandas code.
https://pandastutor.com/. Accessed: 2023-02-20.

[15] Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, H. V.
Jagadish, and Mirek Riedewald. 2020. QueryVis: Logic-based Diagrams Help
Users Understand Complicated SQL Queries Faster. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2303–2318.

[16] Daphne Miedema and George Fletcher. 2021. SQLVis: Visual query representa-
tions for supporting SQL learners. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1–9.

[17] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. 2004. Vi-
sualizing Programs with Jeliot 3. In Proceedings of the Working Conference on
Advanced Visual Interfaces (Gallipoli, Italy) (AVI ’04). Association for Computing
Machinery, New York, NY, USA, 373–376. https://doi.org/10.1145/989863.989928

[18] MySQL. 2023. EXPLAIN Statement. https://dev.mysql.com/doc/refman/8.0/en/
explain.html. Accessed: 2023-02-20.

[19] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. 2020. Towards Scalable Dataframe Systems. Proc. VLDB Endow.
13, 12 (jul 2020), 2033–2046. https://doi.org/10.14778/3407790.3407807

[20] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-Grained Lineage at Interactive
Speed. Proc. VLDB Endow. 11, 6 (feb 2018), 719–732. https://doi.org/10.14778/
3199517.3199522

[21] Xiaoying Pu, Sean Kross, Jake M. Hofman, and Daniel G. Goldstein. 2021. Data-
mations: Animated Explanations of Data Analysis Pipelines. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–14.

[22] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984. https://doi.org/10.1145/3299869.
3320212

[23] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent
Code Explorer for Data Wrangling. In The 34th Annual ACM Symposium on
User Interface Software and Technology (Virtual Event, USA) (UIST ’21). As-
sociation for Computing Machinery, New York, NY, USA, 198–207. https:
//doi.org/10.1145/3472749.3474744

[24] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Trans.
Comput. Educ. 13, 4, Article 15 (nov 2013), 64 pages. https://doi.org/10.1145/
2490822

[25] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: A Software Tool for Visual Program
Simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’10). Association for
Computing Machinery, New York, NY, USA, 49–54. https://doi.org/10.1145/
1930464.1930471

[26] Hadley Wickham. 2014. Tidy data. Journal of Statistical Software 59, 10 (2014),
1–23.

[27] Eugene Wu. 2020. databass is a query compilation engine built for Columbia’s
database courses. https://github.com/w6113/databass-public. Accessed: 2023-02-
20.

[28] Eugene Wu. 2022. SQLTutor Visualizes Query Execution. https://cudbg.github.
io/sqltutor/. Accessed: 2023-02-20.

https://pyodide.org/
https://www.indeed.com/career-advice/finding-a-job/types-of-data-science-jobs
https://www.indeed.com/career-advice/finding-a-job/types-of-data-science-jobs
https://pandas.pydata.org/docs/user_guide/advanced.html
https://pandas.pydata.org/docs/user_guide/advanced.html
https://pandas.pydata.org/
https://www.tidyverse.org/
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://github.com/Instagram/LibCST
https://doi.org/10.1145/1978942.1979444
https://tidydatatutor.com/
https://pandastutor.com/
https://doi.org/10.1145/989863.989928
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3199517.3199522
https://doi.org/10.14778/3199517.3199522
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/1930464.1930471
https://github.com/w6113/databass-public
https://cudbg.github.io/sqltutor/
https://cudbg.github.io/sqltutor/

	Abstract
	1 Introduction
	2 Related Work
	3 System Design and Implementation
	3.1 Design of Core Table Visualization Library
	3.2 Supported Data Transformation Operators
	3.3 Visualizing SQL Query Plans

	4 Deployment and Preliminary Impact
	5 Conclusion
	Acknowledgments
	References

